Search results for "Cam assay"

showing 4 items of 4 documents

Simultaneous Boron Ion‐Channel/Growth Factor Receptor Activation for Enhanced Vascularization

2018

[EN] Boron ion is essential in metabolism and its concentration is regulated by ion-channel NaBC1. NaBC1 mutations cause corneal dystrophies such as Harboyan syndrome. Here we propose a 3D molecular model for NaBC1 and show that simultaneous stimulation of NaBC1 and vascular growth factor receptors (VEGFR) promote angiogenesis in vitro and in vivo with ultra-low concentrations of VEGF. We show Human Umbilical Vein Endothelial Cells (HUVEC) organization into tubular structures indicative of vascularization potential. Enhanced cell sprouting was found only in the presence of VEGF and boron, effect abrogated after blocking NaBC1. We demonstrate that stimulated NaBC1 promotes angiogenesis via P…

0301 basic medicineIntegrinsVEGF receptorsBiomedical EngineeringEuropean Regional Development FundLibrary scienceBoron ionGeneral Biochemistry Genetics and Molecular BiologyBiomaterials03 medical and health sciencesNaBC10302 clinical medicineGrowth factor receptorPolitical scienceFibronectinbiologyEuropean researchVascularizationChick embryosVEGFEngineering and Physical Sciences030104 developmental biologyResearch councilFISICA APLICADA030220 oncology & carcinogenesisbiology.proteinCam assayAdvanced Biosystems
researchProduct

Determination of the LD50 with the chick embryo chorioallantoic membrane (CAM) assay as a promising alternative in nanotoxicological evaluation

2021

Toxicity tests in rodents are still considered a controversial topic concerning their ethical justifiability. The chick embryo chorioallantoic membrane (CAM) assay may offer a simple and inexpensive alternative. The CAM assay is easy to perform and has low bureaucratic hurdles. At the same time, the CAM assay allows the application of a broad variety of analytical methods in the field of nanotoxicological research. We evaluated the CAM assay as a methodology for the determination of nanotoxicity. Therefore we calculated the median lethal dose (LD50), performed in vivo microscopy and immunohistochemistry to identify organ-specific accumulation profiles, potential organ damage, and the kineti…

animal structuresChemistryeducationBiomedical EngineeringEmbryo02 engineering and technology010501 environmental sciences021001 nanoscience & nanotechnologyToxicology01 natural sciencesCell biologySilica nanoparticlesChorioallantoic membraneNanotoxicologyembryonic structures0210 nano-technologyCam assay0105 earth and related environmental sciences
researchProduct

The Chorioallantoic Membrane Assay in Nanotoxicological Research—An Alternative for In Vivo Experimentation

2020

Nanomaterials unveil many applicational possibilities for technical and medical purposes, which range from imaging techniques to the use as drug carriers. Prior to any human application, analysis of undesired effects and characterization of their toxicological profile is mandatory. To address this topic, animal models, and rodent models in particular, are most frequently used. However, as the reproducibility and transferability to the human organism of animal experimental data is increasingly questioned and the awareness of animal welfare in society increases at the same time, methodological alternatives are urgently required. The chorioallantoic membrane (CAM) assay is an increasingly popu…

chorioallantoic membrane assayComputer scienceGeneral Chemical EngineeringTransferabilityReview02 engineering and technologylcsh:Chemistry03 medical and health sciencesIn vivoCAM modelGeneral Materials Science030304 developmental biology0303 health sciencesAnimal Welfare (journal)Human organism021001 nanoscience & nanotechnologyrodent modelsanimal modelsCAM assayChorioallantoic membranelcsh:QD1-999in vivo modelsnanoparticlesnanotoxicologyBiochemical engineering0210 nano-technologyCam assayExperimental Organismtoxicology<i>in vivo</i> modelsNanomaterials
researchProduct

New 3-Aryl-2-(2-Thienyl)acrylonitriles with High Activity against Hepatoma Cells

2021

New 2-(thien-2-yl)-acrylonitriles with putative kinase inhibitory activity were prepared and tested for their antineoplastic efficacy in hepatoma models. Four out of the 14 derivatives were shown to inhibit hepatoma cell proliferation at (sub-)micromolar concentrations with IC50 values below that of the clinically relevant multikinase inhibitor sorafenib, which served as a reference. Colony formation assays as well as primary in vivo examinations of hepatoma tumors grown on the chorioallantoic membrane of fertilized chicken eggs (CAM assay) confirmed the excellent antineoplastic efficacy of the new derivatives. Their mode of action included an induction of apoptotic capsase-3 activity, whil…

0301 basic medicinelcsh:Chemistry0302 clinical medicinelcsh:QH301-705.5SpectroscopyMolecular StructureKinaseChemistryLiver NeoplasmsGeneral MedicineHep G2 CellshepatomaComputer Science ApplicationsCAM assayMolecular Docking SimulationChorioallantoic membraneBiochemistry030220 oncology & carcinogenesistyrphostinTyrosine kinasemedicine.drugSorafenibCarcinoma HepatocellularthiopheneThiophenesCatalysisArticleInorganic ChemistryVEGFR inhibition03 medical and health sciencesStructure-Activity RelationshipIn vivomedicineHumansPhysical and Theoretical ChemistryMode of actionMolecular BiologyProtein Kinase InhibitorsCell ProliferationAcrylonitrileDose-Response Relationship DrugOrganic Chemistrymolecular dockingVascular Endothelial Growth Factor Receptor-2anticancer drugs030104 developmental biologylcsh:Biology (General)lcsh:QD1-999ApoptosisDocking (molecular)Drug Screening Assays AntitumorInternational Journal of Molecular Sciences
researchProduct